Investigations of the Effect of the Non-Manganese Metal in Heterometallic-Oxido Cluster Models of the Oxygen Evolving Complex of Photosystem II: Lanthanides as Substitutes for Calcium
نویسندگان
چکیده
We report the syntheses and electrochemical properties of nine new clusters ([LLnMn(IV)3O4(OAc)3(DMF)n](+) (Ln = La(3+), Ce(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Yb(3+), and Lu(3+), n = 2 or 3)) supported by a ligand (L(3-)) based on a 1,3,5-triarylbenzene motif appended with alkoxide and pyridine donors. All complexes were obtained by metal substitution of Ca(2+) with lanthanides upon treatment of previously reported LMn3CaO4(OAc)3(THF) with Ln(OTf)3. Structural characterization confirmed that the clusters contain the [LnMn3O4] cubane motif. The effect of the redox-inactive centers on the electronic properties of the Mn3O4 cores was investigated by cyclic voltammetry. A linear correlation between the redox potential of the cluster and the ionic radii or pKa of the lanthanide metal ion was observed. Chemical reduction of the LMn(IV)3GdO4(OAc)3(DMF)2 cluster with decamethylferrocene, resulted in the formation of LGdMn(IV)2Mn(III)O4(OAc)3(DMF)2, a rare example of mixed-valence [MMn3O4] cubane. The lanthanide-coordinated ligands can be substituted with other donors, including water, the biological substrate.
منابع مشابه
Reduction potentials of heterometallic manganese-oxido cubane complexes modulated by redox-inactive metals.
Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese-oxido cubane clusters [MMn3O4] (M = Sr(2+), Zn(2+), Sc(3+), Y(3+)) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were pre...
متن کاملOxygen evolving complex in photosystem II: better than excellent.
The Oxygen Evolving Complex in photosystem II, which is responsible for the oxidation of water to oxygen in plants, algae and cyanobacteria, contains a cluster of one calcium and four manganese atoms. This cluster serves as a model for the splitting of water by energy obtained from sunlight. The recent published data on the mechanism and the structure of photosystem II provide a detailed archit...
متن کاملMolecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts.
Well-defined mixed-metal [CoMn3 O4 ] and [NiMn3 O4 ] cubane complexes were synthesized and used as precursors for heterogeneous oxygen evolution reaction (OER) electrocatalysts. The discrete clusters were dropcasted onto glassy carbon (GC) and indium tin oxide (ITO) electrodes, and the OER activities of the resulting films were evaluated. The catalytic surfaces were analyzed by various techniqu...
متن کاملA synthetic model of the Mn₃Ca subsite of the oxygen-evolving complex in photosystem II.
Within photosynthetic organisms, the oxygen-evolving complex (OEC) of photosystem II generates dioxygen from water using a catalytic Mn(4)CaO(n) cluster (n varies with the mechanism and nature of the intermediate). We report here the rational synthesis of a [Mn(3)CaO(4)](6+) cubane that structurally models the trimanganese-calcium-cubane subsite of the OEC. Structural and electrochemical compar...
متن کاملBiomimetic Model Studies Reveal the Role of the Ca Ion in Photosystem II Redox-inactive metal ions play crucial roles in tuning the reactivity of oxygen-containing metal complexes and metalloenzymes such as the oxygen-evolving complex (OEC) in photosystem II (PSII)
Redox-inactive metal ions play crucial roles in tuning the reactivity of oxygen-containing metal complexes and metalloenzymes such as the oxygen-evolving complex (OEC) in photosystem II (PSII) and its small-molecule mimics. In PSII, a Ca ion is part of the tetrameric Mn cluster, Mn4CaO5, and is integral to the water oxidation catalysis and evolution of oxygen by the OEC. Several different funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 54 شماره
صفحات -
تاریخ انتشار 2015